Sleeping sickness in south- eastern Uganda: a spatio-temporal analysis of disease risk, 1970-2003

Berrang-Ford, L., O. Berke, S. Sweeney, and L. Abdelrahman (2010). Vector-borne and Zoonotic Diseases. Available on-line ahead of print. Find PDF.

Sleeping sickness is a major threat to human health in sub-Saharan Africa. Southeastern Uganda has experienced a number of significant epidemics in the past 100 years, most recently from 1976 to 1989. Recent and continued spread of the disease has highlighted gaps in the ability of current research to explain and predict the distribution of infection. Vegetation cover and changes in vegetation may be important determinants of transmission and disease risk because of the habitat preferences of the tsetse fly vector. This study examines the determinants of sleeping sickness distribution and incidence in southeastern Uganda from 1970 to 2003, spanning the full epidemic region and cycle, and focusing in particular on vegetation cover and change. Sleeping sickness data were collected from records of the Ugandan Ministry of Health, individual sleeping sickness treatment centers, and interviews with public health officials. Vegetation data were acquired from satellite imagery for four dates spanning the epidemic period, 1973, 1986, 1995, and 2001. Zero-inflated regression models were used to model predictors of disease presence and magnitude. Correlations between disease incidence and the normalized difference vegetation index (NDVI) at the subcounty level were evaluated. Results indicate that sleeping sickness infection is predominantly associated with proximity to water and spatial location, while disease incidence is highest in subcounties with moderate to high NDVI. The vegetation density (NDVI) at which sleeping sickness incidence peaked differed throughout the study period. The optimal vegetation density capable of supporting sleeping sickness transmission may be lower than indicated by data from endemic regions, indicating increased potential for disease spread under suitable conditions.